

U.S. ARMY COMBAT CAPABILITIES DEVELOPMENT COMMAND

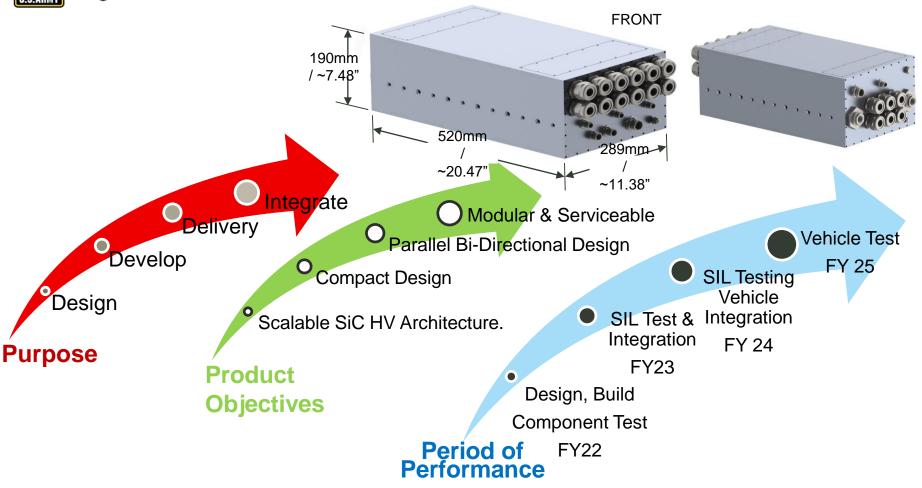
Platform Electrification and Mobility (PEM) Inverter, Electric Sprocket Drive, and Generator Overview

Joshua Tylenda

Project Lead

CCDC GVSC

DISTRIBUTION A. Approved for public release; distribution unlimited. OPSEC #: 6802


Inverter Requirements at-a-glance:

- Universal bi-directional Silicon Carbide AC/DC inverter for motor drive and regen/generator modes (speed, torque and voltage control)
- 500kW continuous and 640kW transient at 600 VDC at 105C 50/50 EGW coolant
- Three 600 VDC power distribution lanes (2x 1070A & 1x 420A)
- → High voltage DC (HVIL) and AC (ACPIL) interlock compatible
- > Capable of parallelization modes with synchronization connections
- Ambient environment -46 to 121C
- Electronics rated to 150C
- > Complies with environmental including shock, vibration, EMI and lightning

PEM INVERTER OVERVIEW

• Inverter is designed to work with Generator and Electric Sprocket Drive motors on 30T and 50-60T series hybrid tracked vehicle designs.

PEM ELECTRIC SPROCKET DRIVE REQUIREMENTS

Electric Sprocket Drive (ESD) Requirements at-a-glance:

- > Modular and/or scalable approach for 30 ton and 50-60 ton solutions
- Pairing with target PEM inverter at AC power interface
- Space claims encompassing motors, brakes, final drives and supporting cooling and actuation systems
- Soft-paralleling of inverters for DC power transfer between left and right side vehicle motors to meet platform mobility needs
- Motor design applicable to multiple platforms. Final drive interface designed to match hull integration for demonstrator (M88)
- ► AC (ACPIL) interlock compatible
- 60T motor design pairs with 2 PEM Inverters, 30T design pairs with 1 PEM Inverter
- Ambient environment -46 to 121C
- Complies with environmental including shock, vibration, EMI and lightning

60T vehicle ESD requirements at sprocket

PEM ELECTRIC SPROCKET DRIVE OVERVIEW

- > Torque/power requirements driven by mobility needs
- Single electrical connection to 30 Ton inverter, dual electrical connection to 50-60 Ton inverters
- Mechanical output to left and right sprocket drives accounting for peak forces (panic breaking/de-track/vertical bump)
- ESD System electrically converts power generation source to torque at the track to maintain the track series hybrid vehicle mobility needs

PEM GENERATOR OVERVIEW

- Operation in torque (motoring) mode for engine start
- Engine speed control used to achieve 600VDC power output from generator during normal operation
- Direct coupling to Cummins engine for installation within PEM SIL & vehicle
- 2 PEM Inverters pair with 50-60T Generator with parallel windings (752kW electrical output power)
- I PEM Inverter pairs with 30T Generator (376kW electrical output power)
- ➤ AC (ACPIL) interlock compatible
- ➢ Cooling, 105C inlet temp with 50/50 EGW
- Ambient environment -46 to 121C
- Comply with environmental including shock, vibration, EMI and lightning.

U.S. ARMY COMBAT CAPABILITIES DEVELOPMENT COMMAND – GROUND VEHICLE SYSTEMS CENTER

Segmented Composite Rubber Track (S-CRT) Overview

Craig Schmehl

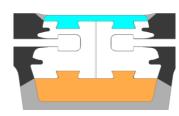
Technical Specialist

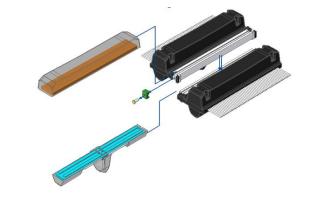
DISTRIBUTION A. Approved for public release; distribution unlimited. OPSEC #: 6802

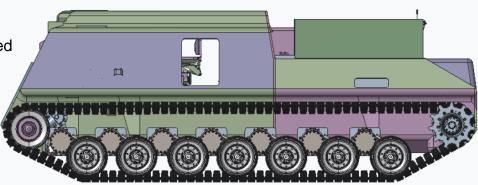
Ground Vehicle Power & Mobility (GVPM)

30 June 2022

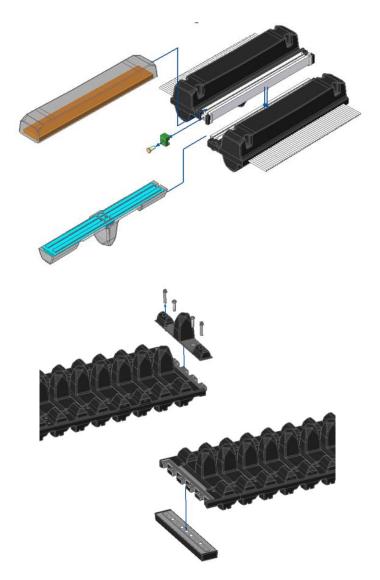
SEGMENTED COMPOSITE RUBBER TRACK (S-CRT)


Program Goals:


- Develop a 60 ton / 7 road wheel station capable track that incorporates a joint
 - Increase max vehicle weight capability
 - Ease vehicle installation and reduced special tools
 - Reduce logistical challenges
 - Maintain track weight reduction typically seen with composite rubber tracks
 - Demonstrate true silent mobility with reduced track noise and vibration while operating in electric only mode
- Physically demonstrate and test track system on Platform Electrification and Mobility (PEM) Demonstrator

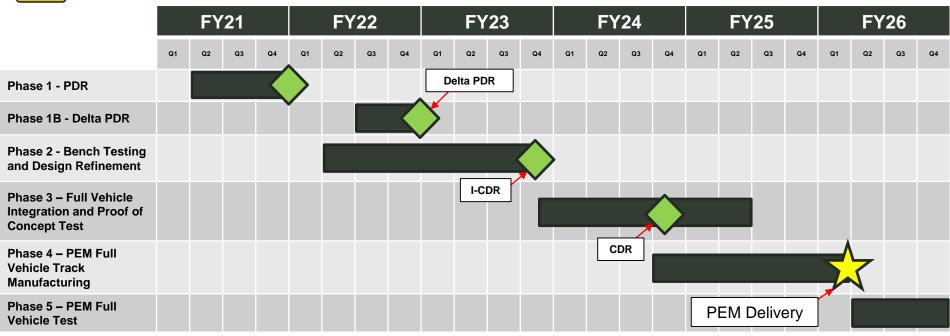

Program Deliverables:

- CAD models and drawings for integration
- Final Report documenting design process and lessons learned throughout testing and demonstrations
- Manufacture prototype track kit delivered for demonstration
- Collect test data on PEM Demonstrator



S-CRT SUMMARIZED SPECS

• S-CRT P-Spec


- Segmented Composite Rubber Track
 - Durability: 1,000 miles (T), 3,000 miles (O) at 60 tons/ 7 road wheel stations per side
 - Track width: ≤ 25 inches
 - Linear track weight: 87 lbs./ft (T), 68 lbs./ft (O)
 - Contractor to determine segment length based on durability
- Road Wheel
 - Durability: 1,000 miles (T), 3,000 miles (O) at 60 tons/ 7 road wheel stations per side with no more than 20% failure
 - Individual wheel weight: 60 lbs. (T), 45 lbs. (O)
 - Diameter: = 25 inches
- Tensioner
 - Durability: 3,000 miles (T), 5,000 miles (O) at 60 tons
- Sprocket
 - Durability: 3,000 miles (T=O)
- Sprocket Carrier
 - Durability: 3,000 miles (T=O)
- Idler Wheel
 - Durability: 1,000 miles (T), 3,000 miles (O)
 - Diameter: = 25 inches

S-CRT SCHEDULE

	FY21			FY22				FY23				FY24					FY	25		FY26				
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
Technology Readiness Level (TRL)									<mark>3</mark> >			4	>						<mark>6</mark>					(7)

Key Dates:

- Delta Preliminary Design Review (Delta PDR): November 2022
- Interim Critical Design Review (I-CDR): August 2023
- Critical Design Review (CDR): December 2024
- PEM Prototype Track Delivery: December 2025

U.S. ARMY COMBAT CAPABILITIES DEVELOPMENT COMMAND – GROUND VEHICLE SYSTEMS CENTER

18" External Suspension Unit (ESU) Overview

Craig Schmehl

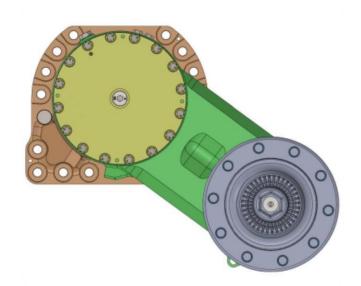
Technical Specialist

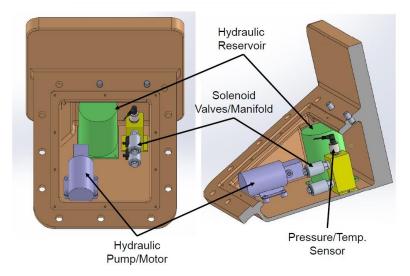
DISTRIBUTION A. Approved for public release; distribution unlimited. OPSEC #: 6802

Ground Vehicle Power & Mobility (GVPM)

30 June 2022

18" EXTERNAL SUSPENSION UNIT (ESU)

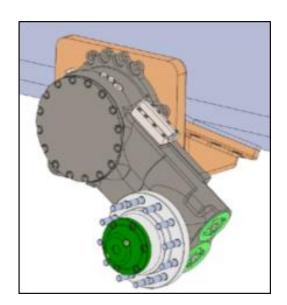


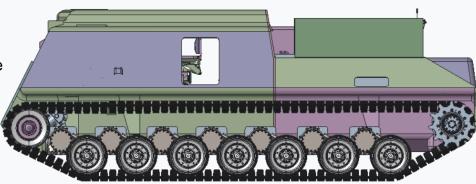

Program Goals:

- Develop a 10,000 lb (T), 12,000 lb (O) capable, 18" external suspension with integrated spring and damping
 - Capable of passive or semi-active damping with minimal modifications
 - Ride Height Control System (RHCS) (+/-6" vertical travel)
 - Track tensioner capable of maintaining track tension with RHCS
- Physically demonstrate and test suspension system on Platform Electrification and Mobility (PEM) Demonstrator

Program Deliverables:

- CAD models and drawings for integration
- Final Report documenting design process and lessons learned throughout testing and demonstrations
- Manufacture prototype 18" ESU's, ride height controller, integrated hydraulic pump, and tensioner delivered for demonstration
- Collect test data on PEM Demonstrator




18" EXTERNAL SUSPENSION UNIT (ESU)

• System Specs:

- Total Wheel Travel: **17** in. (T), 19 in. (O)
- Rebound Travel: 5 in. (T), 6 in. (O)
- Jounce Travel: **12** in. (T), 13 in. (O)
- Road Arm Length (Pivot Length): **18 in.** (T=O)
- Spindle Load: 12,000 lbs. max, 10,000 lbs min. (T=O)
- Wheel Hub Interface: M1A2 Wheel Hub
- MMBF: 5,000 miles (T), 6,000 miles (O)
- Weight: 400 lbs (T), 300 lbs (O)
- Semi-active Damping
- Vehicle chassis attitude control (PEM): 6 in. squat, 4 in. (T) 5
 - in. (O) increase
 - Gun firing angles
 - Increasing obstacle climb capability
 - Reduce vehicle height for transportation
 - Ease road wheel replacement
- Track Tensioner to accommodate ride height change

ESU SCHEDULE

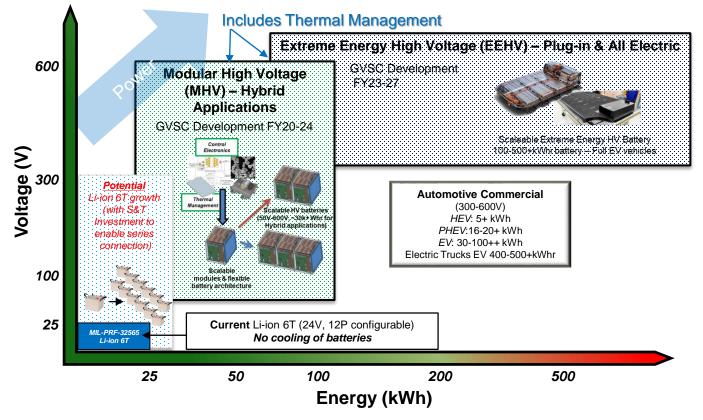
		FY	21		FY22				FY23				FY24				FY25				FY26				
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	
Preliminary Design Review (PDR)								<	\diamond																
Long Lead Hardware Kickoff																									
Critical Design Review (CDR)													>												
Hardware manufacture, assembly / function test																	7								
Demo build integration and vehicle test support																									
Full Vehicle Test																									

	FY21			FY22				FY23				FY24				FY25				FY26				
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
Technology Readiness Level (TRL)								4	Ð			<mark>(5</mark>)						<mark>6</mark>					(7)	>

Key Dates:

- Preliminary Design Review (PDR): December 2022
- Critical Design Review (CDR): October 2023
- PEM Prototype ESU Delivery: October 2024

U.S. ARMY COMBAT CAPABILITIES DEVELOPMENT COMMAND – GROUND VEHICLE SYSTEMS CENTER


Modular High Voltage Concept

David Skalny Technical Specialist for Energy Storage DEVCOM GVSC

To meet unique military requirements including Navy Safety certification, standardized/scalable military batteries are needed

Modular High Voltage (MHV) Overview

High-Voltage Common Module (HVCM)

MHV Energy Storage System (MHVESS Pack)

<u>Key Features</u>: Flexible architecture to accelerate vehicle hybridization

- Voltage: 50 600+V
- Energy: 3 100 kWh
- Scalable modules (~50V) connected in series/parallel for various applications.
- Qualification to occur at the module level.
- Some consideration for backward compatibility of current force vehicles
- Full operational capabilities between -30°C to 60°C WITH thermal management. Reduced operation down to -46°C or up to 71°C or WITHOUT thermal management.
- Module BMS: provides status and monitoring information for safe operation of pack, built-in tests, diagnostics and cell balancing.
- *Pack BMS (NextBMU Mini).* Reports pack status and monitoring info to vehicle digital com buses. Controls of battery thermal management, battery protection and pre-charge/main contactors.

For more info: Laurence Toomey, Ph.D. Branch Chief Energy Storage Team

laurence.m.toomey2.civ@mail.mil Office: 586-282-4756 Cell: 586-219-4320